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Abstract. The eigenvalues of the Fateev-Zamolodchikov Z,, invariant model transfer
matrix are found for N odd. Their zeros in the complex plane of the rapidity variable are
shown to satisfy a set of Bethe-ansatz type equations similar 1o those cbtained for the
integrable XXZ chains. The eigenvalue for a filled sea of (N —1)-strings gives the free
energy found by the matrix inversion method.

1. Introduction

The Fateev-Zamolodchikov model (Fzm) [1] is a two-dimensional lattice spin model
with N-valued spins on the sites of the lattice, nearest neighbours interactions and
global invariance under the Z,; group of discrete rotations in spin space. In [1] it was
shown that it is possible to choose the interactions between spins so that the model is
self-dual [2] and the Boltzmann weights satisfy the star-triangle equations [31. In the
same paper, the free energy was found by means of the matrix inversion method [4].

The same authors proposed in [5] a conformal field theory with Zy symmetry
group and invariance of the correlation functions under a duality transformation, and
conjectured that such theory should describe the scaling limit of the Fzm. The conjecture
has already been confirmed by several authors [6, 7].

The Fzm can be regarded as the non-chiral limit of the self-dual chiral Poits model
[8]. Several recursion relations for the transfer matrix of the chiral Potts model were
recently found [9, 10], and used to determine the largest eigenvalue of the transfer
matrix[11, 12] and the next-to-largest eigenvalue [ 13]. On the other hand, the non-chiral
limit can be handled more easily, because the Boltzmann weights are neatly para-
metrized in terms of trigonometric functions of & single rapidity variable. This makes
it possible, and interesting, to study all the eigenvalues of the Fzm transfer matrix and
associated quantum spin chain with standard methods of exact integrability, In par-
ticular, finite size corrections [14] should reproduce the full spectrum of conformal
dimensions predicted in [5].

In this paper we begin the investigation, reducing the problem of finding the
eigenvalues of the transfer matrix and the quantum spin chain to a set of Bethe-ansatz
type equations. For technical reasons, discussed in section 4, only the case N odd will
be considered. In section 2 we discuss some general properties of the Fzm. The general
form of the eigenvalues is found in section 3 and the Bethe-ansatz type equations
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derived in section 4. In section 5 we conjecture that the ground state of the spin chain
should be given by a filled band of (N — 1)-strings, showing that, with this assumption,
one recovers the free energy of the 2 model, originally found in [1].

2. Genersl properties

The spin variables of the model live on the sites of a square lattice and take on the

values n=0,1,..., N—1. In [1] it was proved that the one-parameter family of
Boltzmann weights (Bw)

Win|u) * sin{mj/N—-m/2N —u)

= 1
W(0|u) ;oisin(mji/N—=/2N+u) ()
Winlu) » sin(mi/N—m/N+u)
(2)

W(O0|u) ;=1 sin(mj/N—uw)

is a solution of the star-triangle equations. Here u is a/2N of [1] and we will adopt
the normalization W(0|u)= W(0|u)=1. The Bw are real non-negative when the
rapidity u is the ‘physical region’ [0, #/2N]. Notice also the property W(N+n)=
W(n), W(N+n) = W(n). For N=3, (1) and (2) simply reduce to the self-dual 3-state
Potts model (but for N >3 they do nor give the N-state Potts model).

The FzMm can also be seen as the non-chiral limit of the self-dual chiral Potts model
[81, whose Bw are

W, () n b —wa,

= _ (3)
qu (0) j=1 bp - w"aq
“:/pq(") 17 2%~ “’_jaq (@)
qu(O) i=1 bq—w"’bp

where @ = exp(2#i/ N) and the (a, b) variables satisfy the constraint
a¥+bY =k (5)

x a constant, x =p or g. When « =0, we parametrize (5) taking
ax=e2ix bx=w1,’2 e2ix (6)

and set u =g —p. Equations (3), (4) reduce then to (1), (2). This observation will be
used in section 4.

Since (1), (2} are a solution of the star-triangle equations [3] they can be used to
construct a family of commuting transfer matrices

o) = T Wi =i ) W, = | 0) ™)

[T(u), T(u)]=0 Yu u'eC (8)

where M is the number of sites in one row and periodic boundary conditions are
understood. Expression (7) is the matrix representation of an operator acting on the
complex linear space spanned by the spin configurations » =|n;, nz,..., Aa), B =
0,1,..., N—1. It reduces to the identity operator when u = 0 and to the shift operator
when u=a/2N

T(w/2N}=8"'=¢"F S|y, e By = Aag Ry M)
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It is convenient to introduce the following set of operators
Xelnyoome . omyp=Ing o+ 1. 0 npg) mod N
Zk|n1 ST (TR ﬂM>=&J"k|ﬂ| [ (PR HM).

Because of global Z,, invariance of the lattice model, T(u) commutes with

M
X=1I Xk«
k=1
and since X ™ =1, we set X =exp(2imQ/N) where the Zy charge Q can take the
values Q=0,1,..., N—~1. Furthermore T(u)} commutes with the ‘charge conjugation’
operator

Clay ..oy =IN—=ny ... N—uny)
because W(N —n)= W{n) and W(N —n)= W(n). Since C maps the sector Q into
the sector N — (), we conclude that the eigenvalues of T{u) are labelled by @, and the
spectra in the sectors Q and N —~Q are identical. Finally we define the associated
quantum spin chain Hamiltonian H [15] from the expansion

N-1

e 2
z s )~ H O

T(u)=1-Mu
(9}

M N-1 1
———(Xit Zi 2L

2—:1 ne lsm(m-r/N)( kTS

Equation (9) implies that H has an infinite set of conserved charges in involution.
For small positive u the ground state of H obviously corresponds to the largest
eigenvalue of T{u), but when the Bw are strictly positive Perron-Frobenius theorem
[16] guarantees that there can be no level crossing for the largest eigenvalue of T(u),
hence the correspondence extends throughout the physical region. We finally remark
that the spin chain Hamiltonian of the self-dual chiral Potts model
M N-1
H(¢p)=-Y Y ¥ an(Xi+ZiZ:l,

k=1 n=1

(10)
a, =expli(2n — N)¢/N]/sin(na/ N)

can be reduced to (9) by setting the chirality parameter ¢ =0. On the other hand,
under the action of the unitary operator

U= ﬂ zZ;! [I Xk
k=1 k=1
H(¢) transforms as
UH(¢)U™'=-H(p—m)

provided that M =0mod N, so H(¢ = =)} is unitarily equivalent to —H, While the
physical properties of H and —H can be very different, the diagonalization of T(u)
would give the complete spectrum of (10) at these two distinct points of the chirality
parameter.
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3. The spectrum of T(u)

From now on we restrict our considerations to N odd (the reasons for this choice will
be explained in the next section). The distinct Bw that appear in (1),(2) are
W(0), WQ),..., W{{N-1)/2), W(0), W(1),..., W((N—-1)/2). We remove the
denominators defining a normalized transfer matrix

T (u) =[g(u)g(u)]"'T(u)

where
(N-1)/2 i (N=1)/2 i
glu)= 1] sin(ﬂ——z-+ u) guy= I sin(ﬂ— u).
i=1 Jj=1 N
Each entry of T™(u) is a product of (N —1)M sines and it has the general form
(N-1)M

H (CLIJ eiu+c§(2) e—iu)'
k=1

Cali A(u) the eigenvalues of T(u). Owing to (8) the eigenvectors of T(u) do not
depend on the rapidity u '

T(u)|v)=A(u)|v) (11)
so each eigenvalue is a linear combination of matrix elements with coefficients which
do not depend on u [3]. Consequently, we must have

1 Mo

A u)=[—_] P {12}
=] gw] PV

P(e™) being a Laurent polynomial in e*. Furthermore T(u+w)=T(u) and the

prefactor in (12} is invariant under u - u + 7 so only even powers appear in P

P(eiu)= PE(GZiu)I o e2iuﬂ+cﬂm1 e2iu(B—1) e Cop e2iu(—A)

(13}
CB,C_A?&O A,BS-(N_I)M/Z

We cannot conclude that A, B=(N —1}M /2 because cancellations may occur in the
eigenvalue equation (11). We show now, considering the limit u » £ic0, that in the
sector Q=0 we have A= B=(N ~1)M/2. Only the case u - —ic0, which fixes B, will
be presented in detail, the case u - ioco, which determines A, being completely analogous.
After having observed that [g(u)g(u)]™ ~ (™)™ "M when u - —ico, what we have
to prove is that, for #—> —i%0, A5_,(u) is finite and non-zero. Now, we have

W (] —ic0) = "N =72
W(ﬂ | —iw) - wn(N+n)/2
and
M N B i
Tn n’( _iw) = l_[ w"k(n‘;ﬂ_nu‘
' k=1

Notice that T(—icc).X = T(—i%0), hence eigenvalues Ay{—ico) are 0 if Q52 0, but we
cannot conclude yet that Ao_o(—io0) # 0. So we pass to the representation where the
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X, operators (and X'} are diagonal

) 1 N-1
Xilow) = 07 ay) |ﬂk>=ﬁ Zigw"*"*lcn:)-

In this basis we have

T(=i0}g,5r= L {o|n)(n, Tn')(n'| ")

nn
1 M , . -
== E H "k”kw"'k("kﬂ_”k)w_"k"k
N o k=1
M ot
=z H ng,,,,;_néﬂw a""". (14)
n k=1
Here 8, is understood mod N
5 _{l ifa=bmod N
=~ o otherwise.
The sum can be performed after a change of summation variables ni=j, n;=
JiFJas e, By =j1+ja+. ..+ jy which gives
a'o'( lw) N‘Szk-l 0';‘082;( 1 Ti,0 H wak():j-l j) (15)

=2

Since 3L, oy is the Zy-charge of a state | ... o), (15) implies that T, ,{—ic) has
non-zero elements in the Q =0 sector only. In such sector T|;_, has an inverse

_ 1 o

(Tlozo)d'l,'r NM 82,(-| ! 052k-1 T 0 H2 w k(EJ-I ")
Therefore all eigenvalues Ag_y{—io0) are non-zero and B ={N —1)M/2. Inspecting
the limit ¥ - ico we get A=(N —1)M/2. Now we can factorize (12) as

r 1 M
A o) = e ) A (el — 5 2) (B — 3
omi)= | Srnmrn | (€ TRl = 5D (¢ - Han)

where P is a constant, all the zeros x% are non-vanishing and so can be written as
x%=e¥%, Finally
g(O)g(O)]M L sin(u —vy)
glulg(u)l <=1 sinwy,

L=A+B=(N-1}M.

AQ:o(u) = [
(16)

The normalization has been fixed by T(0) =1,,.

Now we turn to the sectors Q #0, and the symmetry under charge conjugation
allows us to consider the sectors Q=1,2,...,(N -=1}/2 only. While we have not been
able to obtain a proof like the one given above, one can show that, in the sector Q

(a) A B<(N-1)M/2-0Q 0=12,...,(N=1)/2
(b) A B=(N-1)M/2—(N-1)/2.
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The proof of (b} relies on a recursion relation for the transfer matrix derived from the
set of relations in [10] and it will be discussed in the appendix. Here we show how
to derive (a). Using the geometric series representation we write the aw

W{n)= W{n|—io0) ﬁ [1+ Eo (eézm)qlw“"z_j)%(l-mz"_l):l

q=1

| — |

W(n)= W(n|—ic) lj 1+ )Eo (e—2iu)q}w}'qj(l_wlf2j)]

q=1

“+co
= W(n|~io0) [1+ Y W9(n) e"zi“"].

qg=1
Inspection of the terms of order g shows that the coefficients W'9(n), W'(n),
which must be polynomials in ’",j=0,1,..., N—1, contain the terms
Lo o e e ™ . .., 0% o % only. Next one considers the expansion of an
arbitrary transfer matrix element in powers of e >“. The coefficient of ¢™*'*? is a sum
of terms like

M M — -
Tu,n'(_ico) E z W(QI)(HJ] - n.;1) e W(qn)(njn - n.;n)

I =1 Rl Fi,=]
() ' (q,) '
W ‘(ﬂ,-l"'n,-l.,.l).-. W ("im—nim+l)

where ¢, +...+q,+4g\+...+ g, = g. So the whole matrix element is a linear combina-
tion of terms, each of which looks like
Tn.n'(“im)wip"("-‘17"f'l)"'ip"(nfn_";n)ipi(n"l7n;1+1)'"i'p’:'(n"mkn"m+|)
PI=qi.. Pa=<qu,P1<4q]... Pm= q. Substituting this into (14) shows that in the X
representation all matrix elements in the sector Q = g go to zero at least like ¢ " and
so musi ihe eigenvalues because (§) and {ii) hold no maiier whai represeniaiion has
been chosen for T{u). Hence B=(N-1)M/2-Q,Q=1,2,...,(N—1)/2. Likewise,
one proves A< (N -1)M/2— Q by examining the ¢** expansion in the limit u - ic.
From (a) and (b) and (16) as well, we conclude that in the sectors Q=0 and

Q=(N-1)/2
A=B=(N-1)M/2-Q

and the factorization in terms of sines can be carried out in (12) without the appearance
of a phase (e?*)*®~*", We assume this to be true also for the others Q sectors, and
arrive at the general form

0z M & s
Aoli) = [f(;::g )}] sm(u v.)

T:r

L=(N-1)M-2Q Q=0,1,...,(N-1)/2 Qa7

AN_Q(H) = AQ(“).
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From this, the eitenvalue of H is easily found to be

L (N-1)/2
=Y coty,-2M Y cot(mj/ N). (18)
k=1 j

j=1

4. Equations for the zeros

In this section, a system of Bethe-ansatz type equations for the zero {v, } will be found,
using a recursion relation for the transfer matrix of the chiral Potts model which was
derived in [9, 10]. We shall briefly describe the features of the self-dual chiral Potts
model that are relevant here.

The transfer matrix defined as in (7) but with the BW (3) (4), depends on two
lapl.uu.y variables P —\up, Up} and g= \uq, q} auUJl:u.CU to the constraint \J; When p 7
is kept fixed and g is varied, but still respecting (5}, the commutation property (8)
helds in the form

[Tog, Tpgl=0.

Since p is thought fixed we will simply write T, for T,,,. The constraint {$) is invariant
under the two mappings

R(a, b)=(b, wa)
Ula, b)=(wa, b)

and the transfer matrix T, satisfies [10]

Z T g T, T e X (19)

where T = TS, g=1(ag, b;)=UR '(a,,b,), and
] [(mHl b -l g )( Nﬁl w(apuwiaq)) N(bq-bp)(bﬁ'@)]M
m,g

jmo @y—w’a, J\jomn B~ la, ab, —w"ab,

(The reader is cautioned that T used here is T of [10]. Since [T,, S]1=0, (19) is
equivalent to (4.40) of [10].) Equation (19) cannot be used as it stands: even though,
in the non-chiral limit « =0, T, is reduced to T{u) by applying the parametrization
(6) and R corresponds to a shift u - u+ /2N, U does not respect the parametrization

I

(6) and it maps T'(u) into a different family T'(u) constructed by choosing a different

fIJ ran he related 14 avan nowarg

solution of 2™ + 5"V =0, Neverthele ven naware A
Wld UL LS O wdll UL LWL LY v Y LI Puwclb

g Y
OULULIVIEL U1 W _ U, 11\;v»1uu.«1\« D, Ywil P

of R by means of
Tyz=A(p, )X ' Tez,

(b, ~wa,)(b, - w_lbq)] M
(wa, —b,)a,~a,)

For arbitrary even powers of U, the following relation is easily derived

’

A(p, q)=[

s—1 i 3
Tuz’q = [ .1—[1 A(P; U2}R2(5—J')q)] X—STth-
j=



1806 G Albertini

When m is odd we write U™ =U™"" because U" =1, and if we restrict ourselves
to odd N we are back to the previous case (this fact was already noticed in [10]). It
is now lengthy but straightforward to express everything in terms of u. The result is

A(u)f"(u +§)

Nety2 o .
_ Jm\ jw (N+1)7r)
= (T u+— | T utmt—e—
,-Z'o P (1) (” N) (” NTTaN )TW

+(N§m d2j+1(u)T_1 (u +j_11'+(i-i_-_1_)7_7) T"(u +j_’n'+1) T(w) (20)
j=0

N 2N N N
where
_ (N+2j+ 1)\ . N-2j-2)m\ T
(N=3)/2 sm(tH‘T TN
A =
(x) jl;[o Sin(ﬁ(N_‘ZJi’) sin(u+—(N+2j)7T)
‘ IN 2N
j+
Nsinu sin(u—%) - sin2(u+(212;)ﬂ')
pa,(u)= in(u+£r) in(u‘f'ﬁr_lr) i=0 inz(u-l-j__w)
s NS N2 ® N
2 Jjm
Net sin (u+—)
x (2j+1)
J=sHN+1/Z . 2 J '”
G
sin (u ON )
- / 5 / '2 '1"1\ 3
Nsinusin(u—i-ﬂﬁ) . sm2(u+( JzN)‘n')
d», = '
er{t) ‘ (2s+1)7\ . (2s+1)wr = jl;IO .2 ST
sinf u+————— | sinl u+—F—7""—-— i uty
N 2N 2 N
. M
.2 7
; Nl—il sin (u+N)
F=s+(N+1)/2 Sinz(u+£w)
2N

All inverses can be removed multiplying both sides with Hj’iil T(u+2im/2N). Since
all matrices commute, equation (20) can be turned into a functional equation for each
eigenvalue by acting with both sides on a common eigenvector. If v is any of the zeros
{v.} of that eigenvalue, any choice

u=v—ja/N j=1,2,...,N-1 (21)
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makes the LHs vanish and produces a set of equations for {v.}. We simply observe
here that the equations ensuing from different choices of j in (21} are all consistent
and reduce to

A(w+(N+1)#n/2N) _I:sin(v—-ﬂ/2N)sin(v+7r/2):|M
A(v+(N-1)m/2N) sin vsin(v—w/2N+7/2) ]

A quicker way to get (22), as described in {9] for the general chiral Potts model, is to
use (4.20) of [10], which reads for the self-dual case

(b, —wa,)(ab, —aqbq)]MT +[(b,, —b,)(ayb, — waqbq)]MT ]
bi(ap_aq) ? btzl(a.?—bq) o

Here 7} is the transfer matrix of a related ‘2 by N’ vertex model, and it commutes

with T,. Again, U must be turned into R and then, once the parametrization in u is

made explicit, i is chosen to make the eigenvalue of T on the tas vanish. OF course,

the equation so derived coincides with (22). Replacing (17) in (22) we arrive at a set

of Bethe-ansatz type equations

(22)

2 k
X Tup=|

Losin(y; — v = (N-1)7/2N) (=M [sin(u. - 11-/2N)]2M o
ke 5in(v; — v+ (N =) m/2N) sin

j=1,2,..., L. It is interesting to notice that the change of variables v, =iA,+7/4N
casts these equations into the form

L sinh(A;— A —iy)_(_ e [sinh(/\f—isy)]lM

—isinh(A; = A +iy) sinh(A, +isy)

k=1 5 k j (24)
_N-lm s=— 1

YTTON T2(N-1)

which is known to arise in the solution of the integrable XXZ spin chains [17, 18]
and the (critical) generalized rsos models [19]. While the general form is the same,
some differences must be mentioned. In the XXZ chain s labels the representation of
SU(2), and takes the values 3, 1,3, ... and ¥, the anisotropy parameter, may change
continuously. Moreover, in (24) the power of the rHs is twice the size of the chain
and the number of unknowns can vary between (N —1)M —(N—1) and (N-1)M
only and not between 0 and Ms, Similar equations were also found for the lattice
version of the sine-Gordon model [20).

, it is interesting to notice a property of the zeros {1, }. Under

a
change oE variables u -/ éN —1-4 the transfer matrix transforms as
T{u)=T(#/2N—u)S
VueC (T' denotes matrix transposition). Moreover, if u€ R the Bw are real, so
T'(u) = T'(u). All this implies that [ T'(u), T(u)] =0 and
A¥(w)=A(m/2N —u)e™" (25)
when u is real (* denotes complex conjugation). Inserting (17) into (25) yields

L e—2|u _x?‘:Z

iP L/4 Le
[ S =e "t I
k=1 Xk -1 k=1

—2iu __ w—ljzxi

-1 (26)
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Although (26) has been derived for u real, the two sides are meromorphic functions
=2iu

in z=e™™ and the equality must hold in the whole complex plane, so that the set of
zeroes of any eigenvalue has the conjugation property
{x¥={o""2xi}.
1

Two possibilities can occur either xF=w""x} or two zeros x, x,- are paired

x¥=w V2x%. Writing A =A% +iA’, we have in the former case

Ar=0 or AL=m/2 (27)
while the latter yields

AK =A% A= =Rk (28)

Notice that the periodicity of (17) and (24) allows one to take —w/2< At < /2.

Several problems arise in the analysis of (23) or, equivalently, (24). A preliminary
study for very small chains shows that (23} produces spurious solutions which do not
correspond to any eigenvalue of H (or T(u)). Some of these solutions give a complex
energy (18) and must obviously be discarded. Other solutions have two identical roots,
v, =1;, and do not appear in the spectrum when H is diagonalized on small chains.
Finally, if {v.} is a solution of (23), any permutation of the roots would give a distinct
solution with the same energy, but, again this degeneracy does nat appear in the
spectium. The last two remaiks suggesti t that the wavelfunction uugul. ECQﬂii'e a }'EuaSE
under a permutation of the roots {v,} (this is known to be the case for models solved
with the Bethe-ansatz [21]). The same phenomenon was observed in [15].

On the other hand, (24) is usually studied in the framework of the string hypothesis
f{22], according to which, in the thermodynamic limit, the solutions group into com-
plexes

NG = A0 47 (m 1= 2k T+ 8 k=1,2,...,n. (29)

(1-v)

4
Al is the centre of the string, n its length, v =*1 its parity and 8, a deviation from
the perfect string behaviour, is supposed to vanish when M —»o0. It is convenient to
label strings by an integer j, shorthand notation for {n;, v;). The standard method {22]
to obtain equations for the centres of the strings is to multiply (24) over different roots
in the same string and then take the logarithm of both sides, reducing it to

1 . 1 b
— £ (AL) — e @5 (AP - A 30
217 J'( ) ZGTM% BZ J’k( ) M ( )

where M, is the number of k-strings. In writing (30}, the following definitions have
been used

;;(A)=2 i ¢, m+2s=-21+1, ;)
=1 )

min(nj,nk)—l

0, (X)) =\, n+m, oo+ (A, [ —nl, v )+ L 28(A, |n —n]+ 21 i)
I=1
and
2 tan~'(cot(ny/2)" tanh(A))
d{A, n, v} = {
if ny=gm gelZ.

The 1 are integers or half-odd.
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A study of (30) requires a preliminary analysis of which lengths and parities can
appear. In [23] the problem has been investigated with regard to the integrable XXZ
chains. When the number of roots, L in our notation, is kept fixed as M - co, a rather
simple set of inequalities on the allowed lengths and parities can be derived. Unfortu-
nately, as (17) shows, L goes to infinity with M and this makes the problem much
more difficult. Besides that, a study of small chains shows that complex pairs (A, A*)
may appear which are not in the form (29). This is known te happen for the XXZ
chains [24], even in the isotropic case [25]. In fact, the restrictions (27), (28) do not
rule out this possibility. Finally, and, again, unlike the XXZ chains, the contribution
to (18) from a single string is not necessarily real. One may then wonder whether some
solutions of (30) have to be discarded or the string centres that solve it autornatically
arrange themselves so that the energy is real.

All these questions are still open and currently under investigation. Here we will
limit ourselves to show that, by filling the real axis with (N — 1)-strings of alternating
parity v = (—1)¥*"/2_one recovers the free energy originally obtained in [1] with the
matrix inversion method, and later rederived in another way [28]. it is convenient to
rewrite (30) in a slightly different form [26]. Define a Z function

1 1 My
Z(A)=— (A ——— (A —AEN, 1
J'( ) 21‘)‘ _)(’\) 21TM§: 'ﬁz‘;!@jk(’\ Aﬁ ) (3 )
Then (30) becomes
() 1y
Z(Ad )=H' (32)

In the thermodynamic limit, the centres of j-strings fill the real axis (or a region of
the real axis) with density p;(A)

1
UM e
p (A = ;\141-1.20 ML, — A0’

If the I/ are arranged in a sequence without jumps

2121
JJJ

where the sign of the rus is + (=) if increasing 7%/’ correspond to increasing {decreas-
ing) AY. Obviously, (33) only holds in the region of the real axis that is actually filled
with j-roots.

Perron-Frobenius theorem guarantees that, for all finite M, the ground state of H
belongs to the sector Q =0, P =0. Consider a state with M strings of length N —1 and
parity .

p=(—1)N2 (34)

hence M{N —1) roots in all. It is easily derived from (31), (32) that I\¥""/M can

vary between Zy_,(+0)=—1%and Zy_,(-0)=1. The I¥"" are half-odd when M is

even and integers when M is odd, and we have M of them, so we conclude that they
P . carsalrmd ao i e 1 SR 1Y i PR

lUIlll a LlUbCly pau\cu SCYUCTICE dIld (1Y _l.} blllllgb llll uw I'Cdl dKlb Wll[l a uensuy
prn -1 (A}, solution of the integral equation

_pN—l(A)szs\:— (A)_LJ. dMG':N’—l,N—I(A_fL)pN—I(p') (35)

27 ' 27 ) _w
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where v is understood to be chosen as in (34). This equation can be solved taking the
Fourier transform. Qur conventions are

f()t)=$j dk e f(k) f(k)=J dA e f(a).

Moreover one needs
2p sin(ny)
cosh 2 — v cos(ny)
sinh(kw/2 —kxw)
sinh(kw/2)

where x={n{N —1)/4N +(1—v)/4} and {} denotes the fractional part. The solution
of (35) is then straightforward if one uses the sum rules for hyperbolic functions [27]

1 (y=—2N
cosh(kw/4N) PN cosh(ZNA)

The free energy per site of the 20 model fs

d
¢J(A’ n, U} ='d_A_¢(A’ n, U):

¢k nv)= '[ dAr e®¢'(A, n,v) =27

ﬁN—l(k)= (36)
= lim ——~ 1
fu) = lim - n A(u)

if A(u) is the largest eigenvalue of the transfer matrix. Under the assumption that the
state (36} is indeed the ground state of H, we find in the physical region 0= u =< /2N

f(u)=—ln(w) ~1J. di py_i(A)

glujglu}/ 2)
N-1 (l1—-v) =«
—_ —2/) + -
xNillncosth cos(2u+ N a(N—-2J) 5 ZN) -
= 2 (N—l (N_Z_)+1r(l—v)_'n')
cos CO\Nn 7 J 2 2N

where the sum comes from taking the product of roots in the same string and
Pr-1{~A)=pn_,(1) has been used. One writes then
NIRRT
A== =™ ik
pNI() 211'6)&,'1( le()
and integrates (37) by parts. After the integral aver A is evaluated by contour integration,
one arrives at

f(u)=—1n(§—%§7§%) + fo(u) = =In G(u)+fo(u)

sinh{ku} sinh(k(w/2N —u)) )
)= =2 J’*w%( x sith(kw(N —1)/2N) cosh(km{N +1)/2N)
40 o k cosh(kw/2N) sinh(ke) sinh(kw/ N)

After a change of variables k = Nx, fo{u) is broken into two parts
1 [ dx sinh( Nxu) sinh(Nx(#/2N — u)) sinh{xw{N —1)/2)
Joluy= =3 Lo * cosh(x/2) sinh(xm/2) sinh(xaN/2)
1 J“ﬂ dx sinh( Nxu) sinh(Nx(#/2N — u)) sinh(xm (N —1)/2)
2] o x cosh®(x7/2) cosh(Nxm/2) )

(38)
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The first term on the rus of (38) can be explicitly calculated and it exactly cancels
—In G(u), so that f (u) is given by the second term on the rRHs of (38), which is precisely
the resuit of [1].

As a final remark, we observe that there exists a deep relation between the N=3
case (Potts model) and the critical rRsos model with parameters p=1,g=1,r=6
studied in [19]. In fact, the recursion relation (20) for the renormalized transfer matrix

N Fg(u)g(u) 1™
T (H)HT(H)[M (39)

is written as

TN )TV (u+m/6)TN(u+a/3)

_[sinusin(u+a/3)7".
—[ sin’(/6) ] T
+[sin(u—1r/6)sin(u+w/6
sin’(m/6)

M sin u sin{u+7/6)
=1 [ sin*(r/6)

Take M even and consider the sector P=0, where T = T, Then, from (3.19°) and
{3.19") of [19] an identical recursion relation can be derived for the transfer matrix
Trsos of the model with parameters p=1, ¢ =1, r =46, at least in the sector where the
operator Y defined therein has eigenvalue 1, and provided that the size of the chain
is doubled.

This is not sufficient to conclude that there is a one-to-one correspondence of the
eigenvalues, but we may conjecture that the largest eigenvalues coincide. This can be
checked for the leading order in the thermodynamic limit. Observe first that the free
energy per site was computed in [19] after renormalizing the transfer matrix (here we
take into account the doubling of the chain length)

sin(u+7/6)
sin(mr/6)
and it was found to be (equation (5.8) of [19])

" dx sinh(12ux/ ) sinh x sinh 3x
e X sinh 6x sinh 2x

)] T™(u+m/3)

] TV (u+27/3). (40)

M
Trsos(u) > Tgsos = [ ] Trsos(u) (41)

Srsos(u) = (42)

Denoting by f(u) the free energy per site of the Potts model, from (39) and (41) we
expect the following equality to hold

sin(u +w/6) sin(-n-/3))
sin(w/3—u) sin(w/6)/°
Using (38) and (42) it is easily checked that {43} is correct. The relation between free
energies of the two models was already pointed out in [19].

f(“)=2fksos(“)—1n( (43)

Appendix

We derive here a recursion relation quadratic in the transfer matrix that allows us to
put a lower bound on A and B. In the homogeneous case p=p’, i.e. when all vertical
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rapidities are equal, the following relation holds [10]
AFV T Taan = A7+ H vy (44)
Here k, I j are integers (j=k+1), 7/} is a family of transfer matrices for a vertex
model with N-valued (j-valued) spins on the vertical (horizontal) bonds. Moreover,
glk, )= U™ R¥'g= U*"R¥'(a,, b,) and A, H, H are functions of a,, b,, a,, b,.
For further details the reader is referred to the original paper.
In [10] it was noticed that

Ay=x!
and that

() — L)

Thq = Tka

where §=§(0,0)= UR™'q is the ‘conjugate’ of g. We look for a rapidity ¢’ such that

§'(k, )= U*"""r*'¢' = conjugate of §(k, I)= UR™'§(k, 1).

Such rapidity is easily found to be g’= U**~**'R*'~*x~14 Therefore, after taking j =1,

the T matrices can be eliminated subtracting from (44) the same equation with g ¢’
and for our purposes it is sufficient to consider the case k=0, /=1. In the resulting

equation, the mannine I ig eliminated as exnlained in section 4 lﬂm’-nn nnlv for N

Maelanairady il anGppeiiis A5 SAiliniadauia PRI L1l SWlaias \Gpiaaiy Wiy avi 0%

odd is this possible) and everything is parametnzcd with (6). The final result is
[—cos® w]MT(u) T(u+ m/2N)—[sin® u]MT(u+w/2)T(u+m/2+ 7/2N)

B [__Ncos(Nu) ) ]M __I:N sin{ Nu)
B sin{ Nu) cosusinu cos(Nu)

Introduce the variable z =¢'“. When u - —ioc, z—» o and the RHs of (45) grows like

M
cOs u sin u} . (45)

2M-2N
~Z .

On the other hand, the LHS cannot grow faster than

—_ ZzMAZ(Z) — ZZM(Z2B—M[N—1))2

4B-2M(N—-1}=-2N.

Since B is integer and N is odd, the inequality can be improved to
B=M(N-1)/2-(N-1)/2.

If u—>ic0, 70 and we get in the same manner

A=M(N-1)/2—(N-1)/2.

References

[1] Fateev V A and Zamolodchikov A B 1982 Phys Lent 924 37

B DRIUTUT ¥ 3 oW ASINVIVULWLRWY T

[2] Kadanoff L P and Ceva H 1971 Phys, Rev. B 3 3918

[3] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics {New York: Academic)
[4] Baxter R I 1982 J. Stat. Phys. 28 1

[5] Fateev V A and Zamolodchikov A B 1985 Sov. Phys.-JETP 62 215

[6] Jimbo M, Miwa T and Okado M 1986 Nucl. Phys. B 275 [F§17] 517



Bethe-ansatz type equations for the FzMm 1813

[7] Von Gehlen G, Rittenberg V and Ruegg H 1985 J. Phys. A: Math. Gen. 19 107
Von Gehlen G and Rittenberg V 1986 J Phys. A: Math. Gen. 19 L625
[8] Au-Yang H, McCoy B M, Perk J H H, Tang $ and Yan N L 1987 Phys. Lert, 123A 219
Baxter R J, Perk J H H and Au-Yang H 1988 Phys. Lett. 128A 138
[9] Bazhanov V V and Stroganov Yu G 1990 J. Star. Phys. 59 799
[10] Baxter R J, Bazhanov V V and Perk J H H 1990 Int. J. Mod. Phys. B 4 803
[11] Baxter R J 1990 Phys. Lett. 1464 110
[12] Baxter R J 1991 Proc. 4th Asia Pacific Physics Conf., Seoul 1990 vol 1 (Singapore: World Scientific)
[13] McCoy M B and Roan S 1991 Phys. Lett, 150A 347
[14] Cardy I L 1986 Nucl. Phys. B 270 [FS16] 186
[15] Albertini G, McCoy B M and Perk J H H 1989 Advanced Studies in Pure Mathematics vol 19 (New
York: Academic)
Albertini G and McCoy B M 1991 Nucl Phys. B 350 745
[16] Gantmacher F R 1959 Matrix Theery vol 2 (New York: Chelsea)
[17] Kinltov A N and Yu Reshetikhin N Yu 1987 J. Phys. A: Math. Gen. 20 1565
[18] Frahm H, Yu N C and Fowler M 1990 Nucl Phys. B 336 396
[192] Bazhanov V V and Reshetikhin N Yu 1989 Int. J. Mod. Phys. A 4 115
[20] lzergin A G and Korepin V E 1982 Nucl Phys. B 205 [F85] 401
[21] Bethe H A 1931 Z Phys. 71 205
[22] Tekahashi M and Suzuki M 1972 Prog. Theor. Phys. 48 2187
[23] Kirillov A N and Reshetikhin N Yu 1988 J. Sov. Math. 40 22
[24] Babelon O, de Vega H J and Viallet C M 1983 Nucl. Phys. B 220 [F83] 13
[25] Avdeev L V and Dorfel B D 1985 Nucl Phys. B 287 [FS14] 253
[26] de Vega H J 1989 Int. J. Mod. Phys. A 4 2371
[27] Gradshteyn 1 5 and Ryzhik [ M 1965 Table of Integrals, Series, and Products (New York: Academic)
[28] Baxter R J 1988 J. Stat. Phys. 52 639



