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Bethe-ansatz type equations for the Fateev-Zamolodchikov 
spin model 

Giuseppe Albertinit 
NORDITA, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark 

Received 4 June 1991, in final form 25 November I991 

Abstract. The eigenvalues of the Fateev-Zamolodchikov Z N  invariant model transfer 
matrix are found for N odd. Their zeros in the complex plane of the rapidity variable are 
shown to satisfy a set of  Bethe-ansatz type equations similar to those obtained for the 
integrable XXZ chains. The eigenvalue far a filled sea of (N-l)-strings gives the free 
energy found by the matrix inversion method. 

1. Introduction 

The Fateev-Zamolodchikov model (FZM) [ I ]  is a two-dimensional lattice spin model 
with N-valued spins on the sites of the lattice, nearest neighbours interactions and 
global invariance under the Z, group of discrete rotations in spin space. In [l]  it was 
shown that it is possible to choose the interactions between spins so that the model is 
self-dual [2] and the Boltzmann weights satisfy the star-triangle equations [3]. In the 
same paper, the free energy was found by means of the matrix inversion method [4]. 

The same authors proposed in [ 5 ]  a conformal field theory with Z, symmetry 
group and invariance of the correlation functions under a duality transformation, and 
conjectured that such theory should describe the scaling limit ofthe FZM. The conjecture 
has already been confirmed by several authors [6,7]. 

The FZM can be regarded as the non-chiral limit of the self-dual chiral Potts model 
[SI. Several recursion relations for the transfer matrix of the chiral Potts model were 
recently found [9,10], and used to determine the largest eigenvalue of the transfer 
matrix [ 11,  121 and the next-to-largest eigenvalue [ 131. On the other hand, the non-chiral 
limit can be handled more easily, because the Boltzmann weights are neatly para- 
metrized in terms of trigonometric functions of a single rapidity variable. This makes 
it pnssib!e, and interesting, !n stody a!! t h ~  eigenva!nes of the FZL.~ transfer = a s k  2nd 
associated quantum spin chain with standard methods of exact integrability. In par- 
ticular, finite size corrections [14] should reproduce the full spectrum of conformal 
dimensions predicted in [5]. 

In this paper we begin the investigation, reducing the problem of finding the 
eigenvalues of the transfer matrix and the quantum spin chain to a set of Bethe-ansae 
type equations. For technical reasons, discussed i n  section 4, only the case N odd will 
be considered. In section 2 we discuss some general properties of the FZM. The general 
form of the eigenvalues is found in section 3 and the Bethe-ansatz type equations 

t E-mail address: albe~ini~nbivax.nbi.dk 

0305-4470/92/071799+ 15904.50 @ 1992 IOP Publishing Ltd 1799 



1800 G Alberfini 

derived in section 4. In section 5 we conjecture that the ground state of the spin chain 
should be given by a filled band of ( N  - 1)-strings, showing that, with this assumption, 
one recovers the free energy of the ZD model, originally found in [l]. 

2. General properties 

The spin variables of the model live on the sites of a square lattice and take on the 
values n = 0.1,. . . , N- 1. In [l] it was proved that the one-parameter family of 
Boltzmann weights (BW) 

is a solution of the star-triangle equations. Here U is a / Z N  of [ l ]  and we will adopt 
the normalization W(0l U )  = O(0l U )  = 1. The BW are real non-negative when the 
rapidity U is the ’physical region’ [0, .~r/2N]. Notice also the property W ( N + n ) =  
W(n),  W ( N +  n )  = W ( n ) .  For N = 3, ( I )  and (2) simply reduce to the self-dual 3-state 
Potts model (but for N > 3 they do not give the N-state Potts model). 

The FZM can also be seen as the non-chiral limit of the self-dual chiral Potts model 
[SI, whose BW are 

where o = exp(Zai/N) and the (a ,  b )  variables satisfy the constraint 

( 5 )  

( 6 )  

N N  a,  + b ,  = K  

K a constant, x = p  or 9. When K =0, we parametrize ( 5 )  taking 

ax = e2ir bx=01/2 e 2 i X  

and set U = 9 - p .  Equations (3), (4) reduce then to ( l ) ,  (2). This observation will be 
used in section 4. 

Since (l), (2) are a solution of the star-triangle equations [3] they can be used to 
construct a family of commuting transfer matrices 

[ T ( u ) ,  T(u’)l=O v u ,  U!€@ (8) 

where M is the number of sites in one row and periodic boundary conditions are 
understood. Expression (7) is the matrix representation of an operator acting on the 
complex linear space spanned by the spin configurations n = I n , ,  n 2 , .  . . , nM). nt = 
0, 1, .  . . , N - 1. I t  reduces to the identity operator when U = 0 and to the shift operator 
when U = v / 2 N  

T(7rlZN) = S-l= eip Slfll,, , , 1 n M ) = l n M ,  nt, ,  . . , nM-l) ’  
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It is convenient to introduce the following set of operators 

Xkln, ... I l k . .  . n M ) = ( n l  ... n , + l .  .. nhi) 

Zklnl .. . n k . .  . n M ) = o " * l n l .  .. n , . . .  n M ) .  

mod N 

Because of global 2, invariance of the lattice model, T ( u )  commutes with 

hi 

k = 1  
x= n Xk 

and since X N  = lid we set X = exp(ZivQ/N) where the Z, charge Q can take the 
values Q = 0,1, . . . , N - 1. Furthermore T (  U )  commutes with the 'charge conjugation' 
operator 

CI E l  . . . E,) = IN - E ,  . . . N - EM) 

because W (  N - n )  = W ( n )  and W( N - n )  = W ( n ) .  Since C maps the sector Q into 
the sector N-  Q, we conclude that the eigenvalues of T ( u )  are labelled by Q, and the 
spectra in the sectors Q and N - Q  are identical. Finally we define the associated 
quantum spin chain Hamiltonian H [ I 5 1  from the expansion 

- uH +O( U*) 
1 

s in (nv /N)  

N-I 
T ( u ) = l - M u  C . 

Equation (9) implies that H has an infinite set of conserved charges in involution. 
For small positive U the ground state of H obviously corresponds to the largest 

eigenvalue of T ( u ) ,  but when the EW are strictly positive Perron-Frobenius theorem 
[16] guarantees that there can be no level crossing for the largest eigenvalue of T(u), 
hence the correspondence extends throughout the physical region. We finally remark 
that the spin chain Hamiltonian of the self-dual chiral Potts model 

M 

. E  
k = l  

N - l  

E 
"-1 

4 

a. =exp[i(Zn -N)@/N]/s in(nv/N)  

can be reduced to (9) by setting the chirality parameter 4 = 0. On the other hand, 
under the action of the unitary operator 

M M 
u= n z;' n X i k  

k r l  k = l  

H ( 4 )  transforms as 

U H ( 4 ) U P  = - H ( @  - 71) 

provided that M = 0 mod N, so H ( 4  = v )  is unitarily equivalent to -H.  While the 
physical properties of H and - H  can be very different, the diagonalization of T ( u )  
would give the complete spectrum of (10) a t  these two distinct points of the chirality 
parameter. 
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3. The spectrum of T(u) 

From now on we restrict our considerations to N odd (the reasons for this choice will 
he explained in the next section). The distinct BW that appear in ( I ) , @ )  are 
W(O), W(1) ,..., W((N-1)/2), w(O), "(1) ,..., w ( ( N - l ) / 2 ) .  We remove the 
denominators defining a normalized transfer matrix 

r N ( U )  = [ ~ ( u ) ~ ( u ) ] ~ T ( u )  

where 

Each entry of T N (  U )  is a product of ( N  - l ) M  sines and it has the general form 

Call A(u) the eigenvalues of T(u). Owing to (8) the eigenvectors of T ( u )  do not 
depend on the rapidity U 

T(u) ju)=A(u) jv)  ( 1 1 )  

so each eigenvalue is a linear combination of matrix elements with coefficients which 
do not depend on U [3]. Consequently, we must have 

P(e'") being a Laurent polynomial in e'". Furthermore T(u+.rr)= T(u) and the 
prefactor in (12) is invariant under U + U + so only even powers appear in P 

21u(-A) p(e'") = pZ(e"") = cE e''"'+ cs-, e2'"(E-1) . . , e 
(13) 

C'. CL* # 0 A, B S ( N  - 1)M/2. 

We cannot conclude that A, B = ( N -  1)M/2 because cancellations may occur in the 
eigenvalue equation (11) .  We show now, considering the limit U + i im,  that in the 
sector Q = 0 we have A = B = ( N  - 1 )  M/2. Only the case U + -im, which fixes E, will 
be presented in detail, the case U + im, which determines A, being completely analogous. 
After having observed that [ g ( u ) g ( u ) l M  - when U + -im, what we have 
to prove is that, for U + -im, AQ-,,( U )  is finite and non-zero. Now, we have 

~ ( ~ 1  -jm) = w n ( N - n ) / 2  

- w(n 1 -im) = ( , )"(N+")/2 

and 
M 

T," (-im) n w " * ( " * * x - n k ) ,  

k = I  

Notice that T(-im)X= T(-im), hence eigenvalues AQ(-im) are 0 if  Q # O ,  but we 
cannot conclude yet that AoGa(-im) # 0. So we pass to the representation where the 
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Xk operators (and X) are diagonal 

In this basis we have 

Here S4b is understood mod N 

if a =  b mod N 
otherwise. S0.b = 

The sum can be performed after a change of summation variables n: = j ,  n; = 
Jl+j2,, , , , n', = J l + J 2 + .  , +jM which gives 

Since Z:*"-, uk is the ZN-charge of a state lul . . . uM), (15) implies that T,,,.(-ico) has 
non-zero elements in the Q = 0 sector only. In such sector Tlp=o has an inverse 

M 

(TIQ=o)"!.'=p - 1 S&M, 4.o&,M, Ik.0 n 0-c7;(x;:: 7,) 
k = 2  

Therefore all eigenvalues A,=,(-im) are non-zero and B = ( N -  1)M/2. Inspecting 
the limit u+im we get A = ( N - l ) M / 2 .  Now we can factorize (12) as 

where p is a constant, all the zeros x i  are non-vanishing and so can be written as 
x k  = e2i"k. Finally 2 

L = A + B = ( N - l ) M ,  

The normalization has been fixed by T(0)  = l id.  
Now we turn to the sectors Q # 0, and the symmetry under charge conjugation 

allows us to consider the sectors Q = 1,2,. . . , ( N  - l ) / 2  only. While we have not been 
able to obtain a proof like the one given above, one can show that, in the sector Q 

( a )  A,  B S  ( N -  1)M/2- Q Q =  1 , 2 , .  . . , (N-1)/2 

( b )  A,  E 2  ( N  - 1)M/2-(N- 1)/2, 
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The proof of ( b )  relies on a recursion relation for the transfer matrix derived from the 
set of relations in [lo] and it will be discussed in the appendix. Here we show how 
to derive (a). Using the geometric series representation we write the BW 

Inspection of the terms of order q shows that the coefficients W(")(n), W ( q ) ( n ) ,  
which must be polynomials in o'", j =0, 1 , .  . . , N- 1, contain the terms 
1, o", o-" ,wZn,  o - ~ * ,  . . . , oqn, U-"" only. Next one considers the expansion of an 
arbitrary transfer matrix element in powers of e-2s". The coefficient of e-21uq is a sum 
af terms !ike 

Wi)(nj,-n:,+,) ... w ( 9 ' )  - ( n S m - n : - + , )  

where q1 + , , . + q,, + q; + . . . + 4:. = q. So the whole matrix element is a linear combina- 
tion of terms, each of which looks like 

T ,(-ico)w'P,'", I - " ' ) . . . * P " ( ~ , " - " ~ " ) ~ P ~ ( " , , ~ " ~ ~ + ~ ) . . . ~ P ~ [ " ~  1, -n;  - 1 1  1 
*I  

p ,  s q1 . . . p .  < q., p i  S 41 . . . p k  S q;. Substituting this into (14) shows that in the X 
representation all matrix elements in the sector Q = q go to zero at least like and 
so musi the eigenvaiues because (Sj and ( i  i j hoid no maiier what representation has 
beenchosenfor T ( u ) .  Hence B s ( N - l ) M / 2 - Q , Q = l , 2  ,..., ( N - l ) / 2 .  Likewise, 
one proves A s  ( N  - 1)M/2- Q by examining the e2i" expansion in the limit U + im. 

From ( a )  and ( b )  and (16) as well, we conclude that in the sectors Q=O and 
Q =  (N-1) /2  

A = B =  ( N -  1)M/2- Q 

and the factorization in terms of sines can be carried out in (12) without the appearance 
of a phase (e2i")*(B-A0 , W e assume this to be true also for the others Q sectors, and 
arrive at the general form 



Bethe-ansatz type equations for  the FZM 1805 

From this, the eitenvalue of H is easily found to be 

L (N-1)/2 

E =  cot u k - 2 M  cot(r j /N).  
k = l  ] = I  

4. Equations for the zeros 

In this section, a system of Bethe-ansatz type equations for the zero { u k )  will be found, 
using a recursion relation for the transfer matrix of the chiral Potts model which was 
derived in [9,10]. We shall briefly describe the features of the self-dual chiral Potts 
model that are relevant here. 

The transfer matrix, defined as in (7) but with the BW (3), (4), depends on two 

is kept fixed and q is varied, but still respecting (9, the commutation property (8) 
holds in the form 

iapSQ vaiiab!es p = ( t i p ,  bp) and q = ( t iq ,  b,) aii:jzi;zb io :he COiiSi ia i i i i  ( 5 ) .  $?%en p 

[ Tpq,  Tpq.l = 0. 

Since p is thought fixed we will simply write T, for T,. The constraint (5) is invariant 
under the two mappings 

R(a,  b ) = ( b , m a )  

U(a ,  b )  = (ma, b )  

and the transfer matrix T, satisfies [lo] 

where 'f= TS, Q = ( o g ,  b , )=  UR-'(a, ,  bq) ,  and 

m-l  b -,,,J+l N ( b ,  - bp)(bp - a g )  
e,.,=[( n a,,b,-w"a,b, 

(The reader is cautioned that T used here is 'f of [lo]. Since [T,, S ] = O ,  (19) is 
equivalent to (4.40) of [lo].) Equation (19) cannot be used as it stands: even though, 
in the non-chiral limit K+O, T, is reduced to T ( u )  by applying the Parametrization 
( 6 )  and R corresponds to a shift U -t U + .rr/2N, U does not respect the parametrization 
( 6 )  and it maps T(u) into a different family T' (u)  constructed by choosing a different 

of R by means of 
.nl..+i-.. -F , N I  h N  - n hra.in.+hnlprr ..n..lpII 11 h- mlQtnA t- e.IPI --...~_- 
D " . Y L I V L I  V L  U I U -". . . b " b I U L b A b D O ,  **-I. y""b.0 "L Y UY.l " C  L C . Y L I Y  I" C l b l l  yuwc'" 

TU', = A ( p ,  r2q)X-'TR2,  

For arbitrary even powers of U, the following relation is easily derived 
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When m is odd we write U" = U"+N because U N  = l i d  and if we restrict ourselves 
to odd N we are back to the previous case (this fact was already noticed in [ l o ] ) .  It 
is now lengthy but straightforward to express everything in terms of U. The result is 

where 

( ( N + ~ J + ~ ) T ) ~ ~ ~ ( , +  
2N 

sin U +  

j - 0  ( ( N - 2 j - l ) ~ )  sin ( U +  sin U +  
2N 

N sin u sin( u -&) ,~-, sin2 [ P Z " ( U )  = 

,^. . .> 

2N ir 

N-l 

x n  
j=r+(N+l) /2  . 

( 2 S + l ) T  . ( 2 ~ + l ) ~  --) T j - n  sin'( U+$) 
sin ( U +  2N )sin(ut 2N 2 

1': N - I  sin2 (U +$) 
x n  

j=s+lN+1)/2 . 2 

All inverses can be removed multiplying both sides with II,":' T ( u + 2 j ~ / 2 N ) .  Since 
a!! matrices commute, equation (20) can be turned into a functional equation for each 
eigenvalue by acting with both sides on a common eigenvector. If v is any of the zeros 
{ v k }  of that eigenvalue, any choice 

U =  v - j T l N  j =  1 , 2 , .  . . , N - 1  (21) 
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makes the LHS vanish and produces a set of equations for {U*}. We simply observe 
here that the equations ensuing from different choices of j in (21) are all consistent 
and reduce to 

(22) 

A quicker way to get (22), as described in [9] for the general chiral Potts model, is to 
use (4.20) of [IO], which reads for the self-dual case 

A(u+(N+l)lr/ZN) = - [ sin(u-.rr/ZN) sin(u+ a/2) 
A(u + ( N  - 1 ) ~ / 2 N )  sin u s i n ( u - ~ / Z N + ~ / Z )  

Here is the transfer matrix of a related '2 by N' vertex model, and it commutes 
with T,. Again, U must be turned into R and then, once the parametrization in U is 
mzde elp!ici!, U is chosen !o mzke the eigenvz!ce of T on !he LUS vanlsh. Of CnUrse, 
the equation so derived coincides with (22). Replacing (17) in (22) we arrive at a set 
of Bethe-ansatz type equations 

sin(uj - T / z N ) ] ~ ~  (23) 

j = 1,2,. . . , L. It is interesting to notice that the change of variables uk = iAk + T / ~ N  
casts these equations into the form 

[ sin U, 
sin(Uj-Uk-(N-1)T/2N) = ( - 1 ) ~ + ~  n .  

k - l  sin(uj - u k  + ( N -  I ) T / z N )  

sinh(Aj-isy) 2M sinh(Aj-Ak -iy) =(-1)M+' 

(24) 
[ sinh( Aj + isy) 1 n .  

k=l sinh(Aj-Ak+iy) 
( N - l ) r  1 

'= 2N 2(N-1)  
S =  

which is known to arise in the solution of the integrable XXZ spin chains [17,181 
and the (critical) generalized RSOS models [19]. While the general form is the same, 
some differences must be mentioned. In the XXZ chain s labels the representation of 
SU(2), and takes the values f ,  I , + ,  . . . and y, the anisotropy parameter, may change 
continuously. Moreover, in (24) the power of the RHS is twice the size of the chain 
and the number of unknowns can vary between ( N  - l )M - ( N  - 1) and ( N  - l )M 
only and not between 0 and Ms. Similar equations were also found for the lattice 
version of the sine-Gordon model [ Z O ] .  

5. Free energy 

Before we ana!yse (24), it is interesting to notice a property of the zeros {u.!. Under 
a change of variables U +  ?r /ZN-u the transfer matrix transforms as 

T ' ( u ) =  T ( ? r / 2 N - u ) S  

Vu E C (Ti  denotes matrix transposition). Moreover, if U E R the BW are real, so 
T' (u)=  Tt(u). All this implies that [T ' (u ) ,  T(u)]=O and 

A * ( u ) = A ( T / ~ N - u )  eCiP ( 2 5 )  
when U is real (* denotes complex conjugation). Inserting (17) into ( 2 5 )  yields 
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Although (26) has been derived for U real, the two sides are meromorphic functions 
and the equality must hold in the whole complex plane, so that the set of in = e-2i" 

zeroes of any eigenvalue has the conjugation property 

(x:2}=(0-"2x:}. 

Two possibilities can occur: either x:'= o-'/~x: or two zeros xk,  xw are paired 

A ; = U  or A; = n/2 (27) 

A: =A:, A: = -A:,. (28) 
Notice that the periodicity of (17) and (24) allows one to take -a /2<A:s  a j 2 .  

Several problems arise in the analysis of (23) or, equivalently, (24). A preliminary 
study for very small chains shows that (23) produces spurious solutions which do not 
correspond to any eigenvalue of H (or T ( u ) ) .  Some of these solutions give a complex 
energy (18) and must obviously be discarded. Other solutions have two identical roots, 
uk = U,, and do not appear in the spectrum when H is diagonalized on small chains. 
Finally, if (U,) is a solution of (23), any permutation of the roots would give a distinct 
solution with the same energy, but, again, this degeneracy does not appear in the 

under a permutation of the roots {U,} (this is known to be the case for models solved 
with the Bethe-ansatz [21]). The same phenomenon was observed in [15]. 

On the other hand, (24) is usually studied in the framework of the string hypothesis 
[22], according to which, in the thermodynamic limit, the solutions group into com- 
plexes 

x:'= w-'/~x:.. Writing A = AR +iA', we have in the former case 

while the latter yields 

_̂̂ ..&_._ TL^ ,^^a I...̂ _^_I_ I _ ^  .I.̂. .L̂  ... F *:-- ...;..I.* - ..I.̂^̂ Jyrcrlum. L U G  L d > L  LW" lGllld_Lr.3 OUggGoL L I I d ,  L U G  Wd"GIUlLL.ILVl l  lrrlgrll aLqU1LS d yr,a.Jc 

(29) 
( l -u)7r.  k = 1 , 2  , _ _ _ ,  n. Y 

2 4 
A$'' = A$") +- (n + 1 - 2k)i+- I + a$;) 
.\?"I IS ' the centre of the string, n its length, U = *1 its parity and 8, a deviation from 
the perfect string behaviour, is supposed to vanish when M +m. It is convenient to 
label strings by an integer j, shorthand notation for (n, ,  U,). The standard method [22] 
to obtain equations for the centres of the strings is to multiply (24) over different roots 
in the same string and then take the logarithm of both sides, reducing it to 

where Mk is the number of k-strings. In writing (30), the following definitions have 
been used 

f,(A)=2 + ( h , n , + 2 ~ - 2 1 + 1 , v , )  

@,,(A) = + ( A ,  n,+nk ,  u,uk)++(A, In, -nkl ,  upk)+ 

and 

I = ,  

"(",,",)-I 

E 2+(A, In,-nk1+21, U p k )  
I = I  

2u tan-'(cot(ny/2)" tanh(A)) 
if ny = qa q € z .  $0, n, 0) = [ 

The 1;' are integers or half-odd. 
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A study of (30) requires a preliminary analysis of which lengths and parities can 
appear. In [231 the problem has been investigated with regard to the integrable X X Z  
chains. When the number of roots, L in our notation, is kept fixed as M + m, a rather 
simple set of inequalities on the allowed lengths and parities can be derived. Unfortu- 
nately, as (17) shows, L goes to infinity with M and this makes the problem much 
more difficult. Besides that, a study of small chains shows that complex pairs ( A ,  A*) 
may appear which are not in the form (29). This is known to happen for the X X Z  
chains [24], even in the isotropic case [25]. In fact, the restrictions (27), (28) do not 
rule out this possibility. Finally, and, again, unlike the X X Z  chains, the contribution 
to (18)  from a single string is not necessarily real. One may then wonder whether some 
solutions of (30) have to he discarded or the string centres that solve it automatically 
arrange themselves so that the energy is real. 

All these questions are still open and currently under investigation. Here we will 
limit ourselves to show that, by filling the real axis with ( N -  1)-strings of alternating 
parity U = (-1)"+1"2, one recovers the free energy originally obtained in [l]  with the 
matrix inversion method, and later rederived in another way [28 ] .  It is convenient to 
rewrite (30) in  a slightly different form [26]. Define a Z function 

Then (30) becomes 

In the thermodynamic limit, the centres of j-strings fill the real axis (or a region of 
the real axis) with density p,(A) 

If the 1:' are arranged in a sequence without jumps 

7!( I = C" ( I )  1171 
1 1 \ 1 1 ,  -w,\,., \a>/ 

where the sign of the RHS is + (-) if increasing 1:' correspond to increasing (decreas- 
ing) Ah". Obviously, (33) only holds in the region of the real axis that is actually filled 
with j-roots. 

Perron-Frobenius theorem guarantees that, for all finite M, the ground state of H 
belongs to the sector Q = 0, P = 0. Consider a state with M strings of length N - 1 and 
parity 

(34) = (-l)(N+l)/2 

hence M ( N - 1 )  roots in all. It is easily derived from (31), (32) that ILN-"/M can 
vary between Z,._,(+oo)=-f and Z,.-,(-a?)=f. The IbN-" are half-odd when M is 
even and integers when M is odd, and we have M of them, so we conclude that they 

p N - , ( A ) ,  solution of the integral equation 
fiiiii a c;ose;y ( ~ < - ~ ) - s i i ~ n g s  fi;; :he rea; axis .With a density 

~ ~ L O ' , - , , , - , ( A - ~ L L ) P N - ~ ( ~ L )  (35) 
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where U is understood to be chosen as in (34). This equation can be solved taking the 
Fourier transform. Our conventions are 

Moreover one needs 
d 2u sin(ny) 

$'(A,n,u)=-r$(A,n,u)= 
dA cosh 2A - U COS( ny) 

sinh(krr/2 -ha) 
sinh( ka/2)  

r$'(k, n, U ) =  I dA eCMr$'(A, n, u ) = 2 a  

where x = (n( N - 1)/4N + (1 - u)/4} and { } denotes the fractional part. The solution 
of (35) is then straightforward if one uses the sum rules for hyperbolic functions [27] 

1 2N 
a cosh(2NA)' PN-I(A)= 'N-'(k)= cosh(k?r/4N) 

The free energy per site of the ZD model is 
1 

f(u)= lim - - ~ A ( u )  
M-m M 

if A(u) is the largest eigenvalue of the transfer matrix. Under the assumption that the 
state (36) is indeed the ground state of H, we find in the physical region 0s u s  a / 2 N  

a( N - 2j) +--- 
2 2N 

(37) 

N - 1  
cosh2A-cos 2u+- ( 2 N  N-l 

j = l  
x 1 In 

a( N - 2j) +- -- 
2 ZN 

cosh 2A -cos( 

where the sum comes from taking the product of roots in the same string and 
pN-l(-A)=pN-,(A) has been used. One writes then 

and integrates (37) by parts. After the integral over A is evaluated by contour integration, 
one arrives at 

sinh(ku) s inh(k(a/2N-u))  
+"dk xsinh(ka(N- 1) /2N) cosh(km(N+ 1)/2N) 

cosh(ka/ZN) sinh(k?r) sinh(ka/ N )  
( 

/o(u)  = - 2  - 
k 

After a change of variables k = Nx,fo( U) is broken into two parts 

(38) 
+-dx sinh(Nxu) sinh(Nx(n/2N- U)) sinh(xa(N-l)/Z) 

cosh'(xa/2) cosh(Nxal2) 
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The first term on the RHS of (38) can be explicitly calculated and it exactly cancels 
-In G(u),  so thatf (U) is given by the second term on the RHS of (38), which is precisely 
the result of [l]. 

As a final remark, we observe that there exists a deep relation between the N = 3 
case (Potts model) and the critical RSOS model with parameters p = 1, q = 1, r = 6 
studied in [191. In fact, the recursion relation (20) for the renormalized transfer matrix 

is written as 

TN ( u ) f N ( u  + ?r/6)TN (U + r /3 )  

sin U sin(u + ~ / 3 )  =[ sin'(?r/6) 

s in(u-r /6)  s in(u+a/6)  2 M  ] TN(u+7r/3) +[ sinZ(?r/6) 

sin U sin( U + ~ / 6 )  ] TN(u+2r/3) .  
+(-I)" [ sin2(lr/6) 

Take M even and consider the sector P=O, where f =  T. Then, from (3.19') and 
(3.19) of [I91 an identical recursion relation can be derived for the transfer matrix 
TRsos of the model with parameters p = 1, q = 1, r = 6, at least in the sector where the 
operator Y defined therein has eigenvalue 1, and provided that the size of the chain 
is doubled. 

This is not sufficient to conclude that there is a one-to-one correspondence of the 
eigenvalues, but we may conjecture that the largest eigenvalues coincide. This can be 
checked for the leading order in the thermodynamic limit. Observe first that the free 
energy per site was computed in [I91 after renormalizing the transfer matrix (here we 
take into account the doubling of the chain length) 

and it was found to be (equation (5.8) of [19]) 

tm dx sinh( 12uxln) sinh x sinh 3x 
X sinh 6x sinh 2x 

Denoting by f ( u )  the free energy per site of the Potts model, from (39) and (41) we 
expect the following equality to hold 

Using (38) and (42) it is easily checked that (43) is correct. The relation between free 
energies of the two models was already pointed out in [19]. 

Appendix 

We derive here a recursion relation quadratic in the transfer matrix that allows us to 
put a lower bound on A and B. In the homogeneous case p = p ' ,  i.e. when all vertical 
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rapidities are equal, the following relation holds [lo] 
~ ; k l ) p , ~ , ( ~ , ~  =Hg),p+@) i N - 1 )  

Pq rk-1.4(k11. 

Here k, I, j are integers ( j =  k + l ) ,  T$: is a family of transfer matrices for a vertex 
model with N-valued (j-valued) spins on the vertical (horizontal) bonds. Moreover, 
q(k, I) = Uk-'+'R2'-lq= Uk-'+'R2'-l(a,, b,)andh, H, H a r e  functionsofa,, b,, a,, b,. 
For further details the reader is referred to the original paper. 

In [lo] it was noticed that 
,;; = x-' 

and that 
$1 - i J J  

kr7 - Tk9 

where 4 = g(0,O) = UR-'q is the 'conjugate' of q. We look for a rapidity q' such that 
k-!+I 21-1 I $(k, I )  = U r q =conjugate of G(k, I) = UR-'g(S I ) .  

Such rapidity is easily found to he q'= U2*-2'+' R 2k-' q. Therefore, after taking j = 1, 
the T matrices can he eliminated subtracting from (44) the same equation with q +  q' 
and for our purposes it is sufficient to consider the case k = 0, I = 1. In the resulting 

odd is this possible) and everything is parametrized with (6). The final result is 

[-cos2 uIM'f(u)T(u+ a / 2 N )  -[sin2 u]"f (u  + ?r /2 )T(u  + 7r/2+ ? r / 2 N )  

equ~tian, the mzpping u is e i i ~ i ~ t e d  IS e~p!~ ined  in sectinn 4 ( ~ g ~ i n ,  C Z ! ~  FCY r 

cosus inu  . (45) I" N sin( Nu) 
cos( Nu) cos u sin u ]  - [ =[-  N cos(Nu) 

sin( Nu) 

Introduce the variable z =e'". When U + -im, z+  m and the RHS of (45) grows like 
I Z 2 M - 2 N  

On the other hand, the LHS cannot grow faster than 
z 2 M i \ 2 ( Z ) - z 2 M ( Z 2 B ~ M l N - I J  2 ) - 

"^ ..,- ......., I,-..- 
U" w c  ' l ' "U< ua*c 

4 B - Z M ( N  - 1 ) a  -2N. 

Since B is integer and N is odd, the inequality can be improved to 

E 2  M ( N  - l)/Z-(N- l)/2.  

If U + i q  z + 0 and we get in the same manner 

A *  M ( N -  1)/2-(N- l)/2. 
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